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An age-length key (ALK) is the tra­
ditional method for estimating age
composition of an application of fish
population. Tanaka (1953) showed
that the ALK method is a double­
sampling technique (Cochran 1977).
The first stage uses simple random
sampling to collect a very large, but
relatively inexpensive, length sample.
The second stage subsamples a small
number of fish from the first-stage
length samples for relatively costly
age determination (age subsamplel.
Age subsampling in the second stage
can be taken in two fundamental
ways, one in which age subsamples
are randomly taken from the entire
first-stage length samples (random­
age subsampling; Kimura 1977) and
another in which age subsamples are
taken from each stratified length­
stratum (stratified-age subsampling;
Tanaka 1953), In stratified-age
subsampling, fixed-age subsampling
(a constant number of age speci­
mens is taken at each length-stra­
tum) and proportional age sub­
sampling (age specimens is propor­
tional to the random length-fre­
quency) are the most popular
(Ketchen 1949). However, a general
stratified-age subsampling (number
of age specimens varied at each
length-stratum) can also be used.
Stratified-age subsampling is the
major focus of this paper. The simi­
larities in results obtained from
proportional and random-age
subsamplings are given in the
Discussion.

This paper was motivated by two
articles, Lai (1987) and Jinn et al.

(1987), using optimal sampling de­
signs to estimate age composition
of a fish population using ALK The
two articles differ significantly. Lai
(1987) was based on the classic
double-sampling technique and de­
rived the optimal allocation of
length samples and age subsamples
using Kimura's Vartot (Kimura
1977) and the Cauchy-Schwartz in­
equality (Kendall & Stuart 1977) for
fixed-age subsampling and propor­
tional-age subsampling. Lai (1987)
incorrectly used random-age
subsampling for proportional-age
subsampling. In contrast, Jinn et
al. (1987) used a Bayesian approach
to estimate age composition, vari­
ance, and covariance for a general
stratified-age subsampling. They
used the iterative method of Roa &
Ghangurde (1972) to obtain the op­
timal allocation of length samples
and age subsamples for each length­
stratum. with a set of known per­
unit costs for ageing a fish in each
stratum.

The length-based optimal sam­
pling design of Jinn et al. (1987)
has advantages. Because the age of
a fish can be expressed as a func­
tion of its length (e.g., a von
Bertalanffy growth relationship)
and because older fish are more dif­
ficult to age, the per-unit cost of age­
ing a fish can be used to estimate
the difficulty of ageing older (larger)
fish. In addition, the covariance
components are important statistics
because the sum of all age propor­
tions equals I, indicating that the
estimates of age composition are not

mutually independent. The disad­
vantage of the Bayesian approach
of Jinn et al. (1987) is that their
method is mathematically compli­
cated and does not provide explicit
expressions for the optimal alloca­
tions of length and age samples for
an ALK, and thus requires substan­
tial computing effort.

The purpose of this paper is to
derive a length-based optimal sam­
pling design for an ALK using a
classic double-sampling technique.
The covariance of age composition
also is derived using the method of
Kimura (1977). This paper also pro­
vides answers to the question many
fishery scientists have asked
me: What is the explicit solution
to a length-based optimal sampling
design for an ALK? A discussion on
the general applicability ofALK in
the sampling program with com­
plexity of fishery-time-areal strati­
fication and tows/trips clusterization
is also provided.

Methods

I use the following notation for an
ALK with a general stratified-age
subsampling:

N = total number of length
samples;

Nj = number of fish in the ith
length-stratum, i=l,... ,L;

Ii = proportion of fish in the ith
length-stratum. (t =N/N);

n j = number of age sub-samples
randomly taken from the ith
length-stratum;

n jj = number of fish from n j as­
signed to the jth age-class;

qij = proportion of fish in the ith
length-stratum that fall into
the jth age-class (qij =ni/ni );

A = number of age-classes;
L = number of length-strata;
Pj = proportion of population in

the jth age-class;
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Var<pj) = variance ofpj ;
COv(P·,Pk) = covariance between Pi and Pk'
A car~t denotes the estimate of each variable.

The unbiased estimate of Pi (Tanaka 1953) from an
ALKis

(1)

The variance of Pi has been derived by Tanaka (1953)
and Kimura (1977); however, the approximate form of
variance is more frequently used (Kutkuhn 1963,
Southward 1963, Doubleday & Rivard 1983, Lai 1987):

1\ ~[11~ij U-4ii) 1i(~ii-~)2] (2)Var(p.)= k + .
J ;=1 ni N

The terms in the right-hand side of Eq. 2 represent
the portion of the total variance due to variation within
length-strata and that due to variation between strata,
respectively.

The covariance of ~i and ~ is derived using the
method of Kimura (1977):

The approximate form of covariance omits the first
term because this term is small compared with the
sum of the other two terms. A quadratic loss function
(Jinn et al. 1987) is used to infer the precision of the
estimated age composition ~'=(~I'~""'~A):

J.:<Ap)= <J)-p) 'W(p-p)
A 1\ A 1\ 1\

= LW Var (p.l +2. W COli (p., Pk)j=1 ii J j#i jk J

= E [ t W (j}._p.)2] + E [ t W (~.-p.) (~k-Pk)] . (4)j=1 jj J J J#i jk J J

The loss function presented in Eq. 4 is identical to
Kimura's Vartot provided that W is an identity ma­
trix, i.e., w.ii =1 and Wik=O for j:;1!:k.

Substituting Eq. 2 and the approximate form ofEq.
3 into Eq. 4 and collecting terms, we obtain:

_ j" ( a,-u;) b+v-m (5)
.£-2. -- + N .;=1 n.

I

v = t tWJ'kt. ~;; ~ik'
;;;lj. I."

m =j~Wik ~i~'

and where a j llj, b, m, and v are all positive.
A linear c~st function is used for the optimal sam­

pling design:

(6)

where C is total cost, C1 is per-unit cost of collecting a
random length sample, and C2j is per-unit cost for age­
ing a fish in the ith length-stratum.

Survey designs generally are based on two
constraints: (i) a fixed total cost, i.e., minimize the
loss function in Eq. 4 at a fixed cost; or (ii) a desired
precision ofthe estimators, i.e., minimize the total cost
at a given level of the loss function. Therefore, the
problem for optimal allocation becomes one of deter­
mining the optimal set of N' and II;"s which minimizes
L at a given total cost or which minimizes total cost at
a desired precision level of L (N' and n;" are the opti­
mal sample sizes of length and age samples, respec­
tively). Kendall & Stuart (1977, Sect. 39.20) and
Cochran (1977, Sect. 5.5) show that choosing the opti­
mal set ofN' and nj"s to minimize L for a fixed C Qr to
minimize C for a fixed L are both equivalent to mini­
mizing the product ofL and C:

[
L a·- u· b + v - m ] [ L].£C = ~ -'--'+ . clN + ~c2ini .

1=1 N ,-Ini

Applying the Cauchy-Schwarz inequality to Eq. 7, the
product LC is

.£C = [i~(~ a::; r+ (~b+;-mn [NC~2+i;(~C2in)2]

~ [~~C2i(alu;l + ~b+v_m]2.

Kendall & Stuart (1977) showed that the minimum
value of the product LC occurs when

~c21nl = ... = ~c2in; = ... = ~C2LnL = ~cIN = constant>O
~aCUI ~ai-u; ~aCUL ~b+v-m

--n;:- n;- -----n;:- -W- (8)

Use the terms of the equality between the ith and the
(L+llth terms and rearrange the variables to obtain
rt=ntlN', the optimal subsampling ratio between age
subsamples and length samples in the ith length stra­
tum. The solution of r;' is:
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For a survey design. subject to a given total cost C,
rt is the optimal subsampling ratio required to reach
the minimum loss function value (min. 1:). Thus, sub­
stitute Eq. 9 into Eq. 6 and solve for the optimal set of
N" and n j":

The optimal set of N" and n" and min. .1..' subject to
fixed cost is:

(15)

(14)

c1 i~ L (aj-u)

C2 (b+v-m)

"_ n.. _
r - ---

N

Using the Cauchy-Schwarz inequality, the optimal
subsampling ratio (r*) for either minimizing.1! at a fixed
total cost C or minimizing total cost C at a desired
precision level of.1! for a fixed-age subsampling is:

(9)
cdaj-u)

r;= C2i(b+v-m).

n; = r; N,

L (a.-u.) b+v-mmin. .1! =~ _'_1- +---
i=1 n; N

(10)

n" =r" N. (16)

For a survey design. subject to a desired precision level
of .1!, rj" is the optimal subsampling ratio to reach the
minimum total cost (min. C). The optimal set ofN" and
n;" can be obtained by substituting Eq. 9 into Eq. 5:

1 [J.. (a·-u· ) ]N = - )... -'-"-' + b+v-m. ,..c 1=1 ri

n; = r; lV, (11)

L
. ~ L (a;-u;l b+v-m

mIn. .1! = 1=1 + _
n N

and the optimal set of N" and n" and min. C subject to
a desired precision level of .1.' is

L

N = !.-[ i~ (a,.-ui) + b+v-m] ,
.1' r"

L
min. C = clN + ~c2in; .

•=1

n"= rON, (17)

For proportional-age subsampling, the optimal
subsampling ratio (r") for either minimizing .1! at a
given total cost C, or minimizing total cost C at a
desired precision level of ..£, is:

Similarly, the above derivation can be extended to the
traditional fixed- and proportional-age subsampling
schemes. For these age subsampling schemes, the per­
unit cost for ageing a fish is not length-specified (i.e.,
C2i =C2 for all i's). The loss and cost functions in Eq. 5
and 6 are modified according to the definition of the
two age subs.ampling schemes: el) nj=n/L for fixed­
age subsampling, and (2) n; =n Ii for proportional-age
subsampling, where n = In;. The loss function for fixed­
age subsampling is

"r =
C2 (b+v-m)

(18)

! L (a·-u·) b+v-m.1..'= ;=1 I , + _
n N

(12)

The optimal set of N" and n" and min. .1..' subject to a
given total cost C is

and that for a proportional-age subsampling is
n' =r" N, (19)

L '"~ L (aj-u j ) Il. b+v-m
.£= i=1 I + _

n N
(13) !(ai-u)I1.. b+v-m

min. .1.' = ;=1 I + _
n' N

The cost function for both age subsampling schemes
is:

and the optimal set of N" and n" and min. C subject to
a desired precision level of.£ is:
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The solutions given in Eq. 16-20 are similar to that of
Lai (1987), provided that the matrix W is an identity
matrix.

L 1\

1 [ "i.,la,uj)!l. ]
n" = - ;=1 I + (b+v-m) ,

.J: r'

n" = r' N, 120>

Example
The lemon sole 1= English sole Pleuronectes vetulus)

example of Jinn et al. (1987) is used to illustrate the
length-based optimal sampling design. The ALK and
per-unit costs are summarized in Table 1. The total
cost is C=$229.15, and the per-unit cost for collecting
a length offish is c1=$0.15. For simplicity without loss
of generality. consider the special case: Wjk=O for j*k.
Three different sets of wii are used to reflect different
aspects of interest:

Table 1
Age-length key and length-frequency distribution of male lemon sole (= English sole, Pleuronectes vetulus) collected from
Strait of Georgia. British Columbia. Original dataset is from Ricker <1975:68), and per-unit cost for ageing is from Jinn et
al. (1987).

Length Number of Age Number of Per-
stratum age sub- length unit cost

(cm) samples 4 5 6 7 8 9 samples of ageing

27 6 5 1 6 1.0
28 9 3 4 2 9 1.2
29 10 4 4 1 1 30 1.4
30 10 1 5 4 51 1.6
31 10 8 2 54 1.8
32 10 1 7 1 1 48 2.0
33 10 1 3 3 2 1 41 2.2
34 10 2 6 1 1 27 2.4
35 10 1 4 3 2 13 2.6
36 6 1 3 2 6 2.8
37 3 1 1 1 3 3.0
38 1 1 1 3.2

Age proportion 0.12 0.48 0.26 0.09 0.04 0.01
Variance (X 10.3 ) 1.09 2.98 2.46 0.88 0.33 0.04

Case 1 11,1,1,1,1,11: equal interest in estimating all
~i'S;

Case 2 110,30,30,10,1.11: increase precision of four
major age-classes with larger Var(~i);

Case 3 11.1,1,1,10,601: interest in older but rare age­
classes.

The results obtained from length-based design are
compared with those from fixed- and proportional-age
subsampling schemes. The average per-unit cost for
ageing a fish (c2) is calculated as the weighted mean of
c2i• which is c2=$1.96. The optimal set of IN', n;"} and
min. .1.' subject to the given total cost of $229.15 are
computed using Eq. 9 and 10 for length-based age
subsampling, Eq. 15 and 16 for fixed-age subsampling,
and Eq. 18 and 19 for proportional-age subsampling.

Precision improves substantially when length-based
age subsampling rather than fixed-age subsampling is

used in all three cases (Table 2). In the first two cases,
however, precision improves marginally by using
length-based age rather than proportional-age
subsamplings. When rare and older fish lages 8 and 9.
Case 3) are of interest, precision is substantially im­
proved by using length-based age instead of propor­
tional-age subsampling. This is due to the fact that
proportional-age subsampling is not designed to in­
crease age subsamples from length-strata consisting
of older age-classes.

The optimal set of IN", n;"} and min. C subject to a
desired precision level of .£'=0.01 are computed from
Eq. 9 and 11 for length-based age subsampling, Eq. 15
and 17 for fixed-age subsampling. and Eq. 18 and 20
for proportional-age subsampling. Tables 2 and 3 show
similar trends. The cost efficiency of length-based age
subsampling is superior to fixed-age subsampling in
all cases. However, cost efficiency is only marginally
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Table 2
Optimal sample sizes of length and age samples and min. .£
LL': loss function) subject to fixed total cost, C=$229.15, for
three different age subsampling schemes. Age-length key
rlataset is listed in Table 1. Per-unit cost of observing a
length sample, c,=$0.15. Case 1 110;1=11,1,1,1,1,11: Case 2
110;1=110,30,30,10,1,11; and Case 3110;1=11.1,1.1,10,601.

Fishery Bulletin 9 J (2), J993

Table 3
Optimal sample sizes oflength and age samples and minimum
total cost (min. C) subject to a desired precision level of loss
function, .1'=0.01 for the threp different age subsampling
schemes. Age-length key dataset is listed in Table 1. Per-unit
cost of observing a length sample, c,=$O.15. {w;1 for each case
are the same as that in Table 2.

Lengthlcm)

27
28
29
30
31
32
33
34
35
36
37
38

Case 1 Case 2 Case 3

222
4 5 3

14 13 10
21 23 15
15 18 11
16 16 12
17 16 18
9 9 11
5 4 13
2 1 3
111
111

Length (cm)

27
28
29
30
31
32
33
34
35
36
37
38

Case 1 Case 2 Case 3

132
364
8 17 11

12 30 17
9 23 12
9 21 13

10 21 20
5 12 12
3 5 14
1 2 3
112
111

Length-based
sampling
design

n
N'

min. .!.'

107
183

0.0058

109
182

0.1312

100
204

0.0110

Length-based
sampling
design

n
N'

min.e

63
106

135.98

142
236

300.6

111
223

257.25

Improvement of precision 1%)" vs.
Fixed-age subsampling 36.26
Proportional-age
subsampling 4.92

39.15

4.23

28.57

19.12

Cost efficiency (%)/1 vs.
Fixed-age subsampling
Proportional-age
subsampling

35.14

1.08

39.09

3.68

27.06

17.33

Fixed-age
subsampling

Proportional-age
subsampling

n
N'

min. .1'

n'
N'

min. .£

106
146

0.0091

103
179

0.0061

106
141

0.2156

103
177

0.1370

104
172

0.0154

103
183

0.0136

Fixed-age
subsampling

Proportional-age
subsampling

n
N'

min.C

n'
N'

min.C

97
133

209.66

62
108

137.46

229
304

493.48

141
242

312.07

160
265

352.68

140
249

311.16

/I % = percent difference of min. .1' between length-based sam­
pling design and fixed or proportional-age subsampling.

different between length-based age and proportional
age subsamplings in Cases 1 and 2. In Case 3, the cost
efficiency of length-based age subsampling increases
subtantially over proportional-age subsampling.

Discussion

To draw a general conclusion, many different sets of
wjj's and full matrices ofW also were investigated. The
results from these additional analyses were similar to
that of Tables 2 and 3. In general, the length-based
age subsampling is superior to either fixed- or propor­
tional-age subsampling. However, precision improve­
ment and cost efficiency depend on the weights placed
on particular age-classes. Total cost will change in ac­
cord with the different weights and desired precision.
A higher total cost should be allowed for cases where

/I % = percent difference of min. C between length-based sam­
pling design and fixed- or proportional-age subsampling.

sampling is designed to improve the precision of highly
variable estimates, usually young and old age-classes.

A larger budget will increase precision of the esti­
mates, especially for highly variable age-classes; how­
ever, as Lai (1987) showed, there is a point of dimin­
ishing returns as the budget increases (Fig. 1). For the
examples used in this paper, precision improvement is
marginal when total cost (C) increased beyond $40 for
Cases 1 and 3, and beyond $120 for Case 2. Kimura
(1989) showed that satisfactory results from cohort
analysis can be obtained at low sampling levels (i.e.,
total cost) provided that the representativeness of the
samples can be maintained.

It is difficult to compare the methods of Jinn et al.
(1987) with those of this paper because the Bayesian
approach and classic sampling techniques are derived
from different theoretical backgrounds. Nontheless, the
results obtained from this paper are similar to that of
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Figure 1
Relationship between minimum loss function value and total
cost for the lemon sole (= English sole Pleuronectes vetulus)
example. The relationship can be obtained from substituting
N' and n;' in Eq. 10 into the third equation in Eq. 10.

Jinn et al. (1987) although the values ofN* and nt are
different. An advantage of the classic double-sampling
technique is the explicit solutions of the optimal set of
N* and nj*, which reduces computational effort.

In this paper, the optimal sampling design is for
stratified-age subsampling. For random-age subsampl­
ing in which the number of age subsamples (n) is ran­
domly taken from the entire length sample of size N, the
estimated variance and covariance (Kimura 1977) are

L [?~ .. (1-4 ..) ?(~ .._~ .)2 ]
Var (~) = L I IJ I) + _'_'-;-):;--J_

;=1 n N

and

These two equations are similar to that of proportional­
age subsampling in which n;:-:ni; is substituted into
Eq. 2 and 3. However, the estimated variance and co­
variance for proportional-age subsampling are approxi­
mate, and those for random-age subsampling are not.
The similarities of random- and proportional-age
subsamplings can be anticipated because N is a ran­
dom sample from a population so that E(i;)=E(N/N)=lj,
and n is randomly taken from N so that Eln/n)=N/N.
This indicates that the size of each n j will be approxi­
mately proportional to Ij, i.e., njIn=N/N=i; and nj=nolj
(Kutkuhn 1963).

An ALK requires a large random sample of fish
from which a length-stratified subsample is collected
for ageing. Most fishery data are collected either from
surveys in which fish from different tows are sampled
or from commercial catches in which fish from differ­
ent vessel-trips are sampled. Pooling data over such
clusters is necessary because of the cost of data gath­
ering. In addition to cluster sampling, fisheries data
are frequently stratified into time-area, fisheries (or
gears), and sex strata (Kimura 1989). The question is
how to make the optimal sampling design of ALK
generally applicable. To address this, the following
factors must be considered: (1) Need of stratifica­
tion, (2) ALK sampling within stratum, and (3) com­
bined-strata estimation.

Westrheim & Ricker (1978) showed the need for
stratification. An ALK obtained from a population at a
time-interval should not be universally applied to
length-frequency datasets from other populations or
other time-intervals if growth and survival rates are
different among the populations and time-intervals.
Therefore, the factors that may result in differences in
growth and survival rates should be evaluated, and
stratification should account for these factors.

Current sampling programs (e.g., Doubleday &
Rivard 1983, Quinn et al. 1983, Kimura 1989) adopted
the strategy in which length-frequency data collected
from clustered sampling units (e.g., tows or vessel­
trips) within a stratum are pool~d, from which a length­
stratified subsample is collected for ageing. Southward
(1963) evaluated an old method (Southward 1963:12)
in which a set of length and age data is collected from
each landing of a vessel-trip. Because this old method
is not developed from a probability sampling design,
the within-vessel variability in fish lengths is assumed
to be less than between-vessel variability. Southward
(1963) showed that this assumption is not valid and
the estimated variances of age composition from this
old method are so large that little confidence can be
placed in it.

The length-frequency data pooled over clusters
should be a representative sampling of that stratum.
Therefore, the weighting factor of each sample should
be included in the pooling. Ignoring the weighting fac­
tor will bias the estimated age composition (Kimura
1989>. Quinn et al. (1983) described a sampling-rate
method in which a fixed proportion of halibut were
sampled from landings >1000 lbs for length data, and
then age data were subsampled from the pooled length
samples from these landings. All length samples are
self-weighted and can be pooled directly.

Quinn et al. (1983) evaluated the methods of com­
bined-strata estimation and found that the "project­
and-add" method (total catch-at-age is estimated for
each stratum and then the estimates are added over
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strata; see Quinn et al. 1983) produces unbiased esti­
mators if all strata are sampled. The project-and-add
method uses the concept of a stratified, random sam­
pling technique (Cochran 1977). Therefore, Cochran's
rules (Cochran 1977:98) of optimal allocation for strati­
fied random sampling can be applied. In a given stra­
tum, take larger length and age samples if (1) the
stratum i~ larger, (2) the stratum is more variable
internally/ and (3) sampling is cheaper in the stratum.
The first two rules are the basis of the Neyman alloca­
tion (Cochran 1977:99), The sampling-rate method pro­
posed by Quinn et al. (1983) built upon the first rule
and can easily incorporate other rules in the sampling
program.

It is clear that the number of strata and variability
(vartot or loss function) of each stratum should be
evaluated first for designing ALK sampling. Then, the
total cost is allocated into various strata according to
Cochran's rules. Once the total cost for each stratum
is determined, an optimal sampling design for ALK
can be applied. The sampling rate method of Quinn et
al. (1983) can be used to collect the optimal length
sample size from clusters. After pooling the length
samples, a length-stratified subsample is collected for
ageing.
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